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An asymptotic method, used previously for a similar problem [l], is used to study the behaviour of 

contact stresses at a new singular point-the intersection of the apex of a wedge-shaped punch with the 

edge of an elastic three-dimensional wedge. Friction in the contact region is ignored. At fairly small 

wedge angles of the punch and relatively large angles of the elastic wedge, the leading term in the 

expansion of the contact pressures near the singular point r =0 is an oscillator r”‘2ccs(f31nr), where 9 

depends mainly on the wedge angle of the punch. If, however, the angles of the punch and the elastic 

wedge are of the same order of magnitude, terms r-4-3’z-loz, 0 < o, < 112, may appear, which may cause 

stronger oscillations of the contact pressures near the punch apex if o, # 0. 

1, The action of an absolutely rigid punch of wedge planform, pressed into an elastic half- 
space, was considered in [l-7]. Those publications were concerned mainly with determining 
the singularities of the contact pressures at the wedge apex. The most complicated cases, taking 
into account friction or cohesion between a punch of arbitrary wedge angle and a half-space, 
were studied in [4]. In problems with mixed boundary conditions it is interesting to determine 
the singularities of the stresses at corner points of an even more complex type [8]. 

We consider a punch whose planform is a region a, pressed into the edge of an elastic three- 
dimensional wedge with angle a (0 c a c 2x) on whose other edge one of the following 
boundary conditions holds (no stress, sliding or rigid bonding, I, cp, z are cylindrical co- 
ordinates, and the z axis points along the edge of the wedge) 

(a) 0, = Tq = ‘tqz = 0 

(b)u,=q,,,==w=O 

(c) u, = UT = u, = 0 

This problem reduces to the following integral equation [9, lo] 

(1.1) 

l-v 2 
~;;rll4(x,y)dxdyl;shuW,(u)K,,,(tr)x 

n .o 0 

1 
chxul2 &(rx) cosr(z-y)dudt=f(r,z), (r,z)~Q (1.2) 

(a)m=l, (b)m=2, (c)m=3 

w,(u) = 
sh2au+usin2a 

wz(u) = 
ch 2au - cos 2a 

ch2au-u*(l-cos2a)+l’ sh2au+usin2a 
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w;w = rsh2au - usinlla 
Kch2~+~*(l-~os2~)~(l+K2)/2’ 

r=3-4v 

4! _ K(u) BU K(u) 
W*(u) = f 

ch2auTcosa 
2W*(u) + - _’ sh2aufusina 

B&,3 = ~,+~v)"~&,,)" 
=. 

4,2,3tf(~N =$.zt,3(U,Y)f(YW 

(1.3) 

Here, flflr, z) is a function defining the shape of the punch base and the degree to which it 
penetrates into the wedge, q(r, z) are the contact stresses under the punch, and G and v are the 
shear modulus and Poisson’s ratio, respectively, of the wedge material. 

As shown in [9], the Neumann series B; (m= 1, 2, 3) in formulae (1.2) and (1.3) are 
foray convergent in the space C&(0, CQ) of bounded con~nuo~ fictions on the l&f-line 
for all practically significant Poisson’s ratios v > v.(u), i.e. usually for v.(a) values close to 
zero. 

Let Q be an infinite wedge of angle 28 (0 < fi c a/2), described in polar coordinates p, vI 
(r = pcosy, z = psinw) by inequalities 0 6 p c 00, I yt I& 6. To eliminate solutions of Eq. (1.2) 
with infinite energy, we shah confine our attention to the case in which both functions +(p, 
y) = (1- vkl(r, z)/G and fi(p, v) = f(r, z) have Mellin transforms with variable p and 

(1.4) 

Now, writing Eq. (1.2) in terms of p and \y and taking Mellin transforms with respect to p of 
both sides, we obtain [ll] 

W.p)=& +I P (-coJ(r-p))+lls~(W,(u)-dhruc)x 
i 20 

x[R+(-s,ar,t)R+Cw,p)+ R-(-~,u,t)R_(s,u,p)ldu+ 

(1.6) 
+jsh~W,(u)[R+fr,..p)B:{ch~R+f-s.u,t~}+ 
0 
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R_(-s,u,t) II du (IReslcM) 

x[ PSI% (sin r) f $zi (-sin I)] 

x=v/B, h=l/B,e(x)=qJ(W).fs(X)=fs*(W)lP 

-s-H ds = q&s w>, 

Were lr is a straight line parallel to the imaginary axis in the complex s-plane, I(S) is the 
Gamma function, and e”(x) are spherical functions 1121. 

The derivation of formula (1.6) for K,(t, p) uses the value of the integral for a half-space 
(m=l, a=lt) [3] 

~c~[R+(-s,rr,f)R+(s,~,p)~R_(-~,u,p)ldu = 
0 

= &P,_&Ms(‘- p)), IRest< )/t 
(1+7) 

Lemma. ‘Ibe kernel (1.6) of the integral equation (1.5) is symmetric, i.e. K,(r, p) = K,(p, t). 
The proof, which is based on the equality [12] 

relies on changing the order of integration and changing the variables of integration in each 
term of the Neumann series L?z occurring in the expression for K,(f, p). 

The kernel (1.6) admits of the following asymptotic expansion 

(1.8) 

where f&(5, X) are polynomials of degree 2n satisfying the conditions f&M, tx) = t”“f&($, A$, 
AX51 x)=.%(x* 5). 

Formula (1.8) is obtained by expanding the integral terms in the expression (1.6) for K&, p) 
in Maclaurin series, and the first term of type (1.7) in the series (1.9) of 131. It can be shown that 
the series (1.8) converges u~for~y in tQ lxlc 1 for A> ~(l/(~), 2/n), i.e. for small a we 
must have a, > p/ 2. 

The first few terms of the series (1.8) are 

%W =--C-f/,\y(M+$)-_Hyr(~-s)+ln2 

U~(S)=~jg(~-_‘)12W(2)-I(M+s)-\Y(M-S)f2ln2]+373/9000 

b,,(s) = -1, b,(s)=-%(y4-s2) 

xjshxu( W, (u) - cth m)r ($--t+it)Ift-$-i!f)+ 
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+2sh (1.9) 

f;“(5J)=&)(S* +X*)+&)F 

di(s)=%(i-s2+u2)F(u,s)du (IResl<j$) 

r(M-S+iU)(,&-S+iU) _iu 

cos7c[(~-~--_iu)l2] 
q+,(O)+ 

where C is Euler’s constant and v(s) is the psi-function [12]. 
An asymptotic solution of the integral equation (1.5) with kernel (1.8) for small p may be 

obtained by the method of “large h” [3]. Henceforth, to fix ideas, we shall confine ourselves to 
the case 

f. tp. Jf> = jVe-* (p”6-1,6>O,p>O) (1.10) 

If p=O, y+ 0 the punch degenerates into a flat punch. Using standard integrals [12], we 
deduce from (1.10) that 

f,‘(w)=N (S+x+P)r(S+x+p), Res>-j/2-p (1.11) 

Suppose that p is so small that one can ignore terms of order h-2 and higher. Then the 
solution of the problem may be expressed in the form 

4&w) = (1.12) 

g(s)Iln4~-C-_H(H+S)-_~\Y(M-S)+do(S) (1.13) 

From formula (1.12) using the theory of residues, one can obtain an approximate solution of 
the problem for small p, provided that the zeros of the function g(s) (1.13) are known, The 
position of the straight line r is chosen so as to ensure that condition (1.4) is satisfied and 
convergence of the integral 

(1.14) 

2. Let us study the zeros of the function g(s) defined by (1.13) in the strip I Res IC 3/ 2, taking 
into account that, as follows from the lemma, it takes real values on the real and imaginary 
axes, and g(-s) = g(s). The zeros of the function go(s) = g(s) - d,,(s) in the strip have been found 
[3]. The function d,,(s) defined by (1.9) in IResIcl/2 must be considered in the region 
I Res I> l/2 as an analytic continuation of (1.9). The function g(s) has a simple Role on the real 
axis at s = l/2, with residue -V, (m= 1, 2,3), where 

(2.1) 



Contact stresses at the apex of a wedge-shaped punch 147 

Obviously, V, = l/2 - 1 /a = 0.812. The following table lists the values of VI,* as functions of 
a=&/4 for v=O.3 

k 1 2 3 4 5 6 7 

Vl 8.27 0.969 0583 0.500 0.493 0.406 0.350 
v2 0.649 0.818 0.462 0.182 0.296 0.394 0.283 

Inaddition VI++= and V,+1/2-llrc as a+O. 
To compute V,,2 by formula (2.1), it is more convenient not to sum the Neumann series 

B&(l) but to solve the corresponding Fredholm integral equations of the second kind [9] by 
the method of mechanical quadratures, using Gauss’ quadrature formula. This remark also 
applies to other computations involving the operator Bi (m = 1,2,3). 

It follows from the above calculations that, as a rule, g(1/2*0) = TM on the real axis. It can 
be shown that g(312 - 0) = +M, g(i-) = --oo. For sufficiently large values of h obviously, g(0) > 0. 
Therefore, for a fiied angle a and h > h(a), g(s) will have in the strip I Re s IS 3/2 two simple 
zeros on the imaginary axis and two on the real axis: s~,~ =Ml, 8= 0(a, A)= O(h)(h -+-), 
s3,,, = +(I/ 2+ T$, TJ = q(a, h) E (0; l), and moreover h,(a) = O(el’@@) as a + 0. Using the 
theorem on the zeros of g,,(s) proved in [3] and Rouche’s theorem, we conclude that for fixed 
a, as h + m the zeros of g(s) on the imaginary axis are the only ones in the strip I Re s I< l/ 2. 
For example, if X=5, v=O.3, a=nk/4 (k=l, 2, . . . , 7) then for all types of boundary 
conditions (1.1) (m= 1, 2, 3) Q =+i11.2, because of the exponential decrease of the function 
I I(z+iy) I, in expression (1.9) for d,(s) as I y I+ 00, X, y E R. For small a, comparable with 
p = 0.2 (and the same h, v), the values of 8 are as follows: 

a 0.1 0.2 0.4 

m=l 19.3 13.0 11.3 
m=2 0.0960 10.2 11.2 
m=3 8.38 11.2 

When h is fixed and a + 1/(2X) + 0, the equation g(s) = 0 may have additional complex zeros 
in the strip IRes 1<1/2. Thus, for an elastic wedge with one rigidly fastened edge (m=3), at 
a=1.66, h=S, v = 0.3, g(s) has eight pure imaginary zeros in the interval (i2.1, i5.1) and three 
real zeros in (0,1/2). At a = 2p = 0.4 (h = 5, the elastic wedge angle equals the wedge angle of 
the punch), v = 0.3, m = 3, there are two additional real roots in the interval (0.46,0.5). 

Let us suppose that the contour I in formula (1.12) is contained in the strip 0 < Re s < 1 I2 
and intersects the real axis to the right of the zero of g(s) lying in that strip, say s = w, + io,, 
with the largest real part w, if there are any such zeros), and also to the right of the point 
-(l/2+ CL> if it lies in the interval (0, l/2). One can then use the theory of residues to find the 
leading terms of the asymptotic expansion of q.(p, y) as p+ 0. Let us assume from the start 
that in the strip I Res I< 112 the function g(s) has zeros only on the imaginary axis (h > h,(a)). 
Then, if 6 - 1 C p < -l/2, the principal singularity of q.(p, v) will be pp-‘, second to which come 
oscillatory singularities pJ” cosfl(lnpy) and p-3’2 sinB(lnpy). If p = -l/2, the oscillatory singu- 
larities prevail. 

Thus, in the neighbourhood of the apex of a wedge-shaped punch pressed into the edge of 
an elastic wedge, the contact conditions may be violated. For an elastic wedge with one stress- 
free edge (m = l), the frequency of these oscillations will increase as a + 1/(2h) + 0. 

Now suppose that in the strip 0 < Res c l/2 the equation g(s) = 0 has an additional complex 
root s = w, + iw,, co, #O (a and p are of the same order of magnitude; g(s) # 0 for Re s = l/2). 
In that case, if 6 - 1 =S l.t c -(a, + l/2), the principal singularity of the contact stress function will 
be pP-‘, second to which will be oscillatory singularities lie that are stronger than previously. If 
u 2 (w, + l/2), these oscillatory singularities will prevail. 

Using Rouche’s theorem, one can show that the above qualitative picture remains unchang- 
ed if, while using the “large h” method, one does not ignore terms of order X2 and higher. 
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Note that the f~tio~ 4(s), g(s), &) (see (1.9)), unlike q(s) and L&(S), do not have poles 
at s=+lf2. 

Analogous arguments will show that q& v) - O(p-‘-?) as p -+ 00, where Re s = 1/ 2 + q is the 
least real part of any root of the equation g(s) = 0 in the strip l/2 c Re s < 3 / 2. 

Noting the behaviour of the function q.(p, v) as p + 0 and p + 00) one sees that the integral 
(1.4) converges. The integral (1.14) is clearly also convergent, provided that the straight line r 
intersects the real axis slightly to the left of s = l/ 2. 
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